Welcome To  NEM   

Journals(Abstract)

浅谈“数据计算及应用”专业的《控制理论基础》专业选修课程


卢坚  黄胜绢

辽宁科技大学

摘要(Abstract):

《控制理论基础》是“数据计算及应用”专业开设的一门专业选修课程。课程授课内容包括状态空间描述、状态方程的解、线性定常系统的能控性与能观性、控制系统李雅普诺夫稳定性、状态反馈和状态观测器等。学生通过对一些重要的系统模型及控制理论的正确领会,能够结合所学数学课程,如《数学分析》《高等代数》以及《常微分方程》课程中的相关知识处理控制论中的问题,特别是基于数据的系统建模,控制器和观测器设计以及稳定性理论推导,为今后部分学生完成本科毕业设计,特别是为后续的研究生、博士生阶段的理论科研打下坚实基础。



关键词(KeyWords):

“数据计算及应用”;《控制理论基础》;本科生毕业设计;数据驱动



参考文献(References):

[1]田杨,晏海华.一种基于自动分区的海量科学数据计算框架[J].北京航空航天大学学报,2022,48(6):1004-1012.

[2]申小伟,叶笑春,王达,等.一种面向科学计算的数据流优化方法[J].计算机学报,2017,40(09):2181-2196.

[3]石泓博,范志华,李文明,等.基于数据流架构的NTT蝶式计算加速[J].计算机研究与发展,2025,62(06):1547–1561.

[4] Zhu ,Jun-Wei,Yang , et al.Fault Estimation for a Class of Nonlinear Systems Based on Intermediate Estimator[J].IEEE Transactions on Automatic Control,2016,61(9):2518-2524.

[5] S.-J. Huang, G.-H. Yang. Fault estimation for fuzzy delay systems: A minimum norm least squares solution approach[J]. IEEE Trans. Cybern., 2017, 47(9): 2389-239

[6] S.-J. Huang, S.-H. Li. Data-driven based iterative observers design and off-line fault estimation for Markov jump systems[J]. Automatica, 2025, 173: 112109.

[7] S .-J. Huang, Y. X. Hao. Sampled output data-driven based adaptive observer design and off-line fault estimation for T-S fuzzy descriptor systems[J]. IEEE Trans. Fuzzy Syst., 2024, 32(8): 4426-4435.

[8] Huang ,Sheng-Juan,Yang , et al.Fault Tolerant Controller Design for T-S Fuzzy Systems With Time-Varying Delay and Actuator Faults: A K-Step Fault-Estimation Approach[J].IEEE Transactions on Fuzzy Systems: A Publication of the IEEE Neural Networks Council,2014,22(6):1526-1540.

[9] T. Wang, H. Xu, J. Han, et al. Cascaded hbridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach[J]. IEEE Trans. Power Electron., 2015, 30(12): 7006-7018.

[10] Z. Ge, S. Zhong, Y. Zhang, Semi-supervised kernel learning for FDA model and its application for fault classification in industrial processes[J]. IEEE Trans. Ind. Informat., 2016, 12(4): 1403-1411.

[11]胡静.基于多元统计分析的故障诊断与质量监测研究[D].浙江大学,2015.

[12] B. Li, M. Y Chow., Y. Tipsuwan, et al., Neural-network-based motor rolling bearing fault diagnosis[J]. IEEE Trans. Ind. Electron., 2000, 47(5): 1060-1069.

[13] Y. Li, Y. Yang, X. Wang, et al., Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine[J]. J. Sound Vibration, 2018, 428: 72-86.

[14]王培良,夏春江.基于PCA-PDBNs的故障检测与自学习辨识[J].仪器仪表学报,2015,36(5):1147-1154.



技术支持:人人站CMS
Powered by RRZCMS